
Baltic J. Modern Computing, Vol. 10 (2022), No. 3, pp. 409–421
https://doi.org/10.22364/bjmc.2022.10.3.14

Estonian Speech Recognition and Transcription
Editing Service

Aivo OLEV, Tanel ALUMÄE

Institute of Software Science, Tallinn University of Technology, Estonia

aivo.olev@taltech.ee, tanel.alumae@taltech.ee

Abstract. This paper describes the latest iteration of our Estonian speech recognition system and
the publicly available transcription editing service. The system is now based on an end-to-end
wav2vec2.0 model. It achieves a word error rate of 6.9% on a test set of broadcast conversations.
Besides recognition it performs speaker diarization, speaker identification, Estonian language de-
tection, and punctuation restoration. The service consists of a speech processing pipeline, web
server and a web-based user interface for end-users, offering transcript editing and speaker an-
notation functionality. The core components of the service have been made open-source and
deployed internally by multiple public and private institutions.

Keywords: Speech recognition, Estonian, wav2vec2.0, Nextflow

1 Introduction

Automatic speech recognition (ASR) has evolved rapidly in the past decade and has
gone through waves of significant innovations. The most significant trend in designing
and deploying ASR systems has been the adoption of deep learning methods for training
speech-to-text models, using ever larger amounts of training data. Innovations in model
training architectures as well as advances in hardware, namely graphical processing
units (GPUs), have allowed this amount of data to be utilized in reasonable time-frames.

The most recent architectures support training of models that are not anymore highly
specialized but are useful for many tasks and applications. With the use of a large
amount of well-balanced training data a system using a single model can serve a va-
riety of domains, such as broadcast speech from radio and TV, interviews conducted for
scientific research and meeting recordings. Even on tasks that were not feasible for an
ASR system before, such as transcribing spontaneous dialogue, it now achieves accept-
able word error rate and is generally useful for such a task. This has made ASR systems
practical for a significantly larger audience.



410 Olev and Alumäe

We present the latest evolution of our ASR system for transcribing Estonian speech
and describe how we have deployed it as a freely available service for the general public.
Compared to the previous version (Alumäe et al., 2018), the ASR system now also
performs language identification and the speech-to-text model is now an end-to-end
system that is based on a large pretrained wav2vec2.0 (Baevski et al., 2020) model and
is fine-tuned on annotated Estonian speech data. The performance of the ASR system
is compared to the earlier version that used a Kaldi-based (Povey et al., 2011) model.

The publicly available service consists of a scalable full speech transcription pipeline
for batch processing of long audio recordings1,2 and a web-based graphical user inter-
face (GUI)3,4 that allows end-users to submit audio files for transcription, see the exe-
cution progress, edit the speaker-segmented transcripts in a user-friendly interface and
download the transcripts in various formats. The system is also available in open source
form for installing on-premise, and is used in such form by several Estonian compa-
nies. The system is being developed within the Estonian national language technology
program.

2 Speech-to-text pipeline

Our speech-to-text pipeline consists of the following steps:

– Speech activity detection
– Speaker diarization
– Language identification (Estonian vs. other)
– Speech-to-text, including generating word timemarks
– Punctuation restoration
– Inverse text normalization
– Speaker recognition: identification of known public figures

The speaker diarization, punctuation restoration and speaker recognition compo-
nents in the pipeline are identical to those of our 2018 system (Alumäe et al., 2018) and
will not be described in detail in this paper. For speech activity detection, we replaced
the earlier system based on Gaussian mixture models (GMMs) with an off-the-shelf
neural model Silero VAD (Silero Team, 2021). We’ve found the model to perform well
in all different conditions. The other components of the pipeline will be described in
the rest of this section.

2.1 Language identification

In order to avoid transcribing utterances in other languages using the Estonian model,
we apply a spoken language identification model that aims to filter out speech that is
not in Estonian. The language identification system is based on a model pretrained on

1 https://github.com/taltechnlp/est-asr-pipeline
2 https://github.com/taltechnlp/est-asr-backend
3 https://github.com/aivo0/est-asr-frontend
4 https://github.com/aivo0/est-asr-web-api/



Estonian Speech Recognition and Transcription Editing Service 411

Table 1: Training data for speech recognition.

(a) Acoustic model training data.

Source Amount (h)
Broadcast speech 591
Spontaneous speech (Lippus, 2011) 53
Elderly speech corpus (Meister, 2021) 49
Talks, lectures 38
Parliament speeches 31
Total 761

(b) Language model training data.

Source Tokens (M)
ENC19 Web Scrape 526
ENC19 Ref. Corpus 185
ENC19 Wikipedia 35
OpenSubtitles 98
Speech transcripts 6.1
Subtitles from ETV 3.8
Total 854

the VoxLingua107 corpus (Valk and Alumäe, 2021) that contains automatically scraped
data from YouTube for 107 languages. Pretraining is implemented using the Speech-
Brain framework (Ravanelli et al., 2021) and the model is publicly available5. How-
ever, we don’t use the model’s predictions directly for language classification. We use
it only for extracting utterance embeddings, which are then classified into Estonian or
non-Estonian using a binary logistic regression model. Training data for the regres-
sion model comes from the VoxLingua107 corpus (1000 randomly selected Estonian
utterances and 3000 randomly selected utterances from other languages) and from the
corpus of Estonian L2 speech (Meister and Meister, 2015).

2.2 Speech recognition

2.2.1 Data. Speech data that is used for training the speech recognition models is
summarized in Table 1a. Only the duration of the segments containing transcribed
speech is shown, i.e., segments containing music, long periods of silence and untran-
scribed data are excluded.

Most of the training data has been transcribed by our lab in the last 15 years (Meister
et al., 2012), except the Corpus of Estonian Phonetic Corpus of Spontaneous Speech
that originates from the University of Tartu (Lippus, 2011). Compared to our 2018
system (Alumäe et al., 2018), the amount of acoustic training data has increased from
268 to 761 hours. Most of the increase is due to the addition of ERR2020 corpus6 that
contains 389 hours of broadcast speech, TV talkshows and press conferences and was
transcribed in 2020. In addition, 49 hours of speech produced by elderly (aged 60+
years) speakers of Estonian (Meister, 2021) has been added to the training data.

Textual data used for training the language model (LM) is listed in Table 1b. Most of
the data originates from the subcorpora of the Estonian National Corpus 2019 (ENC2019)
(Kallas and Koppel, 2019): Estonian web, a reference corpus containing balanced data
from the web, newspapers and books, and Estonian Wikipedia. We also use all available
Estonian data from the OpenSubtitles corpus (Lison and Tiedemann, 2016) and scraped
subtitles for the deaf and hard of hearing (SDH) from the Estonian national television

5 https://huggingface.co/TalTechNLP/voxlingua107-epaca-tdnn
6 http://bark.phon.ioc.ee/lw/korpused/ERR2020.html



412 Olev and Alumäe

(ETV). Compared to our 2018 system, the amount of textual data has increased from
690 million to 854 million tokens.

Before using the text data for LM training, text normalization is performed. Texts
are tokenized, split into sentences and recapitalized, i.e., converted to a form where
names and abbreviations are correctly capitalized while normal words at the beginning
of sentences are written in lower case. This is done with the help of the EstNLTK
morphological analyzer (Laur et al., 2020). Numbers and other non-standard words are
expanded into words using hand-written rules.

2.2.2 End-to-end system. We experiment with two end-to-end speech recognition
models that are fine-tuned from the XLS-R-300M and XLS-R-1B models (Babu et al.,
2021) using the connectionist temporal classification (CTC) objective. XLS-R is a fam-
ily of large wav2vec2.0 (Baevski et al., 2020) models pretrained on unlabeled multi-
lingual data. A wav2vec2.0 model is trained by jointly solving a contrastive task over
masked latent speech representations and learning a quantization of the latents shared
across languages. The model contains a convolutional feature encoder that maps raw
audio to latent speech representations which are fed to a Transformer network that out-
puts context representations. XLS-R models are trained on 436K hours of unannotated
speech data in 128 languages, including around 11K hours of Estonian data originating
from the VoxPopuli (Wang et al., 2021), VoxLingua107 (Valk and Alumäe, 2021) and
Mozilla Common Voice (Ardila et al., 2020) corpora.

We fine-tune the XLS-R models on all of our annotatated speech data (see Table
1a) using a standard procedure: transcripts are mapped to sequences of case-sensitive
characters, using the orthographic form of the words, with numbers expanded and punc-
tuation marks removed. Intra-word space is mapped to a special character. The XLS-R-
300M model is then fine-tuned using the CTC objective for 320 000 updates. We train
using an effective total dynamic batch size of 25 600 000 samples (equaling 1600 sec-
onds). A triangular learning rate schedule is used, with linear warm-up phase lasting for
10% of the training time, constant learning rate of 0.0003 that is used during the next
40% of the training time, and a linear decay to a learning rate that is equal to 0.05 of the
maximum during the rest of training time. The convolutional feature extraction layers of
the wav2vec2.0 model are frozen during fine-tuning. Feature-space SpecAugment (Park
et al., 2019) and LayerDrop (Fan et al., 2020) are applied. Fine-tuning is implemented
using the fairseq toolkit (Ott et al., 2019). Fine-tuning takes around five days on four
NVidia A100 GPUs. The model is available at the HuggingFace model repository7.
The larger XLS-R-1B model is finetuned using a similar setup, except here we use a
smaller learning rate of 0.00003, a smaller effective batch size of 640 seconds, and also
disable LayerDrop and reduce the SpecAugment time-dimension masking probability
from 0.75 to 0.5. Those modifications were needed to get the larger model to converge
in a more stable manner.

The CTC-trained model can be used for speech recognition as is, but using shallow
fusion with a LM often helps to improve the accuracy further. For the end-to-end model
LM, we use a subword vocabulary of 40 000 tokens, generated with the SentencePiece
library (Kudo and Richardson, 2018) using the unigram LM method. A 4-gram LM is

7 https://huggingface.co/TalTechNLP/xls-r-300m-et



Estonian Speech Recognition and Transcription Editing Service 413

Table 2: Word error rates on different evaluation sets of the current system and its pre-
decessors, and relative improvement in WER with regard to the 2018 system.

Broadcast Conference User Rel. impr.
conversations talks recordings Avg. w.r.t 2018

Dev Test Dev Test Dev Test

Our 2014 system (Alumäe, 2014) 18.0 17.9 23.7 26.3 N/A N/A N/A
Our 2018 system (Alumäe et al., 2018) 11.0 8.1 14.5 12.9 29.4 22.7 16.4
Current, Kaldi-based 10.1 7.9 13.8 10.4 23.0 18.3 13.9 -15%
Current, XLS-R-300M 9.9 7.3 10.9 9.6 22.7 16.6 12.8 -22%
Current, XLS-R-1B 9.1 6.9 10.4 9.0 20.5 15.7 11.9 -27%

trained for each text corpus using Kneser-Ney smoothing and the final LM is interpo-
lated from the individual models, using interpolation weights optimized on development
data.

Although it is possible to obtain timestamps of the decoded words from the CTC-
based end-to-end model, such timestamps are generally not as reliable as those of a
hidden Markov model based system. Therefore, we realign the recognition hypotheses
of the end-to-end model using the Kaldi acoustic model described below. Pronuncia-
tions of the words in an utterance are automatically generated using a G2P tool and the
pronunciation dictionary and alignment graph are generated on the fly.

2.2.3 Kaldi-based system. We compare the end-to-end model to a Kaldi-based (Povey
et al., 2011) model. The Kaldi acoustic model is a factored time-delay neural network
(TDNN-F) acoustic model (Povey et al., 2018) with a “multistream” architecture (Han
et al., 2021). The multistream architecture uses five basic TDNN-F layers and 17 multi-
stream layers in a (3− 6− 9) dilation configuration. The acoustic model has around 21
million parameters. Speaker adaptation is done using i-vectors. We use standard Kaldi
multi-condition data augmentation (Ko et al., 2017) for acoustic training data: train-
ing data is 3-fold speed perturbed, and the speed perturbed data is in turn augmented
with reverberation, various environment sounds, music or babble noise from the MU-
SAN corpus (Synder et al., 2015). This increases the amount of training data by 15-fold
in total. The acoustic model is trained for six epochs on the augmented data. It takes
around seven days using six NVidia P100 GPUs.

The LM of the Kaldi-based system uses 200 000 compound-split units. A pruned
4-gram LM is used during the decoding and a recurrent LM is used for rescoring the
lattices. After rescoring, we apply out-of-vocabulary (OOV) word recovery to recon-
struct the orthographic transcripts of the decoded unknown words. Language modeling
and OOV recovery is described in more detail in (Alumäe et al., 2018).

2.2.4 Results. Case-insensitive word error rates (WER) of our system on several
datasets are shown in Table 2. Three diverse development and test sets are used: (1)
broadcast conversations (mostly talk shows from different Estonian radio stations), (2)



414 Olev and Alumäe

Table 3: Word error rates on Estonian CommonVoice testsets.
CommonVoice CommonVoice 8 CommonVoice 9

Kaldi TDNN-F 13.72 14.61 15.33
+ RNNLM 11.87 12.67 13.28
wav2vec2.0 XLS-R-300M 12.55 13.41 14.06
+ 4-gram LM 10.59 11.40 11.99
wav2vec2.0 XLS-R-1B 10.13 10.82 11.51
+ 4-gram LM 8.81 9.39 10.02

talks from a local computational linguistics conference, and (3) a random sample of
recordings uploaded to our system by end-users, including mostly interviews and meet-
ing recordings. Results of both the Kaldi-based system as well as the end-to-end ASR
model are shown and WERs of the 2018 and 2014 systems are given for comparison.
All the results are based on fully automatic processing of long speech recordings, i.e.,
speech activity detection, speaker diarization and speech segmentation were used to
obtain speech utterances, and WER was calculated based on the alignment of decoded
and time-stamped words and the reference transcripts in segment time-marked (STM)
files. As can be seen, the end-to-end models result in lower WER numbers than the
Kaldi-based system, especially in more challenging datasets. The average relative im-
provement of the best current system with regard to our 2018 system is 27%.

Recently, the accuracy of end-to-end speech recognition models is often demon-
strated on the Mozilla Common Voice datasets (Ardila et al., 2020). Therefore, we also
include such results for future reference. Table 3 shows the WERs of different decod-
ing setups using the Estonian test split of the CommonVoice8, CommonVoice 8.09 and
CommonVoice 9.010 datasets. The case-insensitive WER results are calculated after
stripping punctuation marks from the reference transcripts. The CommonVoice dataset
contains individual utterances, not long speech recordings. Speech activity detection,
diarization and language identification are therefore not used in this experiment.

Results on CommonVoice show that the smaller end-to-end model fused with an
external LM achieves around 10% relative decrease in WER, compared to the system
that uses Kaldi-based decoding and rescoring with the recurrent LM. The larger end-to-
end model gives around 17% further relative improvement over the smaller model, and
around 25% relative improvement over the Kald-based setup.

We also attempted to integrate Transformer-based LM with the end-to-end model,
but this resulted in minor or no improvements in WER, while the decoding time in-
creased several times. Therefore, for practical reasons we don’t use a Transformer-based
LM in the current system.

2.3 Inverse text normalization

8 https://huggingface.co/datasets/common_voice
9 https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0

10 https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0



Estonian Speech Recognition and Transcription Editing Service 415

Table 4: Some examples of spoken numeri-
cal expressions and the corresponding writ-
ten forms.

Spoken form Written form
kaksteist 12
kaheteistkümne 12
kaheteistkümnes 12.
kaheteistkümneks 12-ks
kaheteistkümnendate 12.-te
kahesaja üheksakümne
kuuele tuhandele

296000-le

{ "word": "2001.",

"start": 56.12 ,

"end": 57.14,

"unnormalized_words": [

{ "end": 56.33,

"start": 56.12,

"word": "kahe"},

{ "end": 56.54,

"start": 56.33,

"word": "tuhande"},

{ "end": 57.14,

"start": 56.84,

"word": "esimese"}]}

Fig. 1: Example of structure representing a
recognized numerical expression.

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00

Kaldi

End2End

Preparation, CPU
Diarization, CPU
Language ID, CPU
Language ID, GPU
Decoding, CPU
Decoding, GPU
RNNLM Rescoring, CPU
Punctuation, CPU
Post-processing, CPU
Alignment, GPU

Fig. 2: Timeline of different processing steps of the two systems when processing a
53-minute radio show.

Human readers usually prefer that entities like dates, times, addresses and currency
amounts in text are displayed in a nicely formatted way. The conversion of purely tex-
tual tokens into a formatted form is called inverse text normalization (ITN). Currently,
our ITN component only deals with transforming numbers. However, since Estonian is
an inflective language and inflections are also applied to numbers, the implementation
of this process cannot be trivial (see Table 4). Our ITN component is implemented us-
ing hand-designed finite state transducer rules that follow the recommendations of the
Estonian orthography for writing numbers. The Pynini library (Gorman, 2016) is used
for the implementation.

When converting words into written form, we also preserve the original word se-
quence that corresponds to the number. Both the orthographic words and the original
spoken words are given in the final structured transcript (see Figure 1 for a stripped
sample).

2.4 Runtime performance

The Kaldi-based ASR pipeline is able to process most speech files faster than realtime,
when only using CPUs (we usually configure it to use two CPUs during decoding).
However, decoding with large wav2vec2 models is prohibitively slow on a CPU. There-
fore, the new pipeline that relies on end-to-end ASR models requires a GPU for a few
processing steps. This actually makes the new pipeline faster than the old one. Figure
2 shows the timeline of processing a 53-minute radio talkshow using the two systems.



416 Olev and Alumäe

Fig. 3: Computational graph of our Nextflow pipeline.

Steps that are offloaded to a GPU are depicted with a striped fill. As can be seen, the
new pipeline can process the 53-minute file in about 19 minutes, while using a GPU
(NVidia P100) only for 5 minutes to do language identification, the actual decoding and
speech-text alignment. This allows us to process four files in parallel on a server with a
single GPU, with a realtime factor of about 1⁄3.

3 Deployment

3.1 Backend

The implementation of the pipeline is based on a workflow management system (WMS)
Nextflow. Nextflow is a general purpose WMS that was created to address challenges
in the bioinformatics field where data processing pipelines utilize many external tools,
many data streams with large quantities of data, the processing of which can span days
or weeks. Nextflow addresses numerical instability and reproducibility of results, effi-
cient parallel execution, error tolerance, execution provenance and traceability (Di Tom-
maso et al., 2017). Usage of Nextflow in NLP is still uncommon but it is being used
in the field of NLP by at least one NLP research group to build various NLP pipelines
(Reynaert et al., 2015)11,12.

Nextflow is a general purpose tool because it allows to break down a workflow
into distinct processing steps which can run code written in any language or tool that
can be run on Linux. Figure 3 depicts the directed acyclic graph (DAG) generated by
Nextflow after the execution of our processing pipeline. Nextflow handles the depen-
dencies between those steps automatically and takes care of buffering, error handling
and resuming steps so that no step has to be repeated if the inputs have not changed.

The main benefits for our system were firstly that Nextflow reports the progress of
each processsing step. Compared to our previous Makefile-based system, the source
script became shorter, more modular and easier to comprehend, modify and reuse by
others. Thirdly, there were practical deployment and runtime benefits such as support
for most of the popular cluster environments and support for container technologies
(e.g. Docker).

Nextflow has a commercial user interface offering but for us its logging capabilities
and sending of progress information to a custom URL were enough. We built a web
API server to make it easier to upload speech recordings and receive real-time progress

11 https://github.com/proycon/nederlab-pipeline
12 https://github.com/proycon/aNtiLoPe



Estonian Speech Recognition and Transcription Editing Service 417

Fig. 4: Transcription editing user interface.

information and results. The server stores processing pipeline progress and queue in-
formation and it can make predictions and provide users with information on how long
the queued task is going to take. This is important for a public service which is mostly
used during business hours and is hosted on a computing cluster with limited processing
capacity. For the publicly available ASR service we also have a separate web server that
stores user account information and provides an API for the frontend user interface. It
enables the frontend application to frequently save user text editing state and supports
undo and redo actions for every change to the transcription performed within a single
editing session.

3.2 Frontend

The frontend of the ASR system is a modern web application built using the SvelteKit
application framework 13. The primary functionality provided by the user interface (UI)
is the ability to edit automatically generated speech transcriptions. Although the ASR
results are useful for users, many users need to make corrections to the transcriptions.
For this purpose, the UI provides an integrated audio player with a navigable sound
waveform, as shown in Figure 4. The currently playing word is highlighted and users
can also click on a word to seek the audio to the corresponding location in the speech
recording. In order to achieve this, every word has hidden timecodes and the text editor

13 https://kit.svelte.dev/



418 Olev and Alumäe

enables editing of HTML rather than plain text. Besides just transcribed text, the UI also
displays the results of speaker diarization and word recognition confidence information.
The transcribed text is initially split according to speaker turns. Each speaker is either
given a name - in case the speaker was recognized during speaker identification - or
given a unique name, e.g. Speaker 1. User is free to rename one or all occurrences of
the speaker, add more speakers or remove them altogether.

To support HTML editing on the web, a text editing library has to be used14 be-
cause the HTML editing support across web browsers is inconsistent, its standardiza-
tion is incomplete and also because there are multiple ways in HTML to represent the
same visual result which can lead to problems when for example accepting pasted-in
input. The frontend library for HTML text editing is Tiptap15 which is based on Pros-
eMirror16. ProseMirror documents adhere to a strict schema which ensures that there
is only one way to represent the same visual result. It also utilizes immutable state and
transactions. Every change to the document state is achieved through transactions. That
allows changes to be rolled back or applied again (undo, redo) and ensures consistency
between transactions defined through API calls, which get triggered for example when
user clicks a button on the editor toolbar, and modifications to the HTML DOM tree
made by a user directly in the editor. This approach addresses out-of-order and other
synchronization problems which would occur when frequently automatically saving the
editor state to the backend server via (inherently asynchronous) API calls. As every user
action, including undo and redo, is represented as a transaction, the message with less
operations can always be dismissed for the one with more operations.

Every user of the UI has to register an account and be logged in before using the
system in order to protect their privacy. We plan to allow users to explicitly permit the
usage of their speech data for scientific usage. Previously some of the uploaded speech
data has been anonymously used as part of an unlabelled speech corpora (Asadullah
and Alumäe, 2018).

3.3 Usage

The system described in this paper is deployed at the website https://tekstiks.ee.
The system is free to use for the general public, currently without any usage limitations.
The aforementioned study of most frequent users (Olev, 2019) found that the most
users were using the platform for interview and meeting transcriptions as well a lecture
transcriptions. The system has also been used by the office of the Estonian government
for transcribing government press conferences.

Figure 5 shows the number of weekly uploads to the transcription service during
the period from the end of February, 2021 to May, 2022. The usage statistics shows
significant seasonal differences. The average uploads per week over the studied time
period is 891 (127 per day).

The open-sourced ASR pipeline is currently used on-premise by several Estonian
companies and public institutions, operating in media monitoring, call center commu-
nication analysis and media production.
14 https://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
15 https://tiptap.dev/
16 https://prosemirror.net/



Estonian Speech Recognition and Transcription Editing Service 419

2021-03 2021-05 2021-07 2021-09 2021-11 2022-01 2022-03 2022-050

200

400

600

800

1000

1200

1400

1600

Fig. 5: Weekly upload counts of the public Estonian speech transcription service
https://tekstiks.ee

4 Conclusion

This paper presented the latest version of our Estonian speech transcription system
system. The system uses a modern end-to-end wav2vec2.0 architecture and is able to
benefit from a pre-trained model trained on 436K hours of unannotated speech data in
128 languages. It achieves a 7.3% WER on test set of broadcast conversations, 9.6% on
conference talks and 16.6% on various user-submitted recordings. The average relative
improvement compared to our 2018 system is 22%. This confirms that it is possible for
smaller languages to benefit from such a pre-trained model.

The system has been designed to handle semi-spontaneous speech from various do-
mains, such as broadcast conversations, lecture recordings and interviews, and be useful
for a large audience of users, additionally performing punctuation restoration, speaker
diarization, speaker identification and language identification. The processing pipeline
is based on a workflow management system (WMS). The WMS has enabled monitor-
ing of the progress of the pipeline execution. This has allowed us to provide real-time
progress information to end-users. The system has been deployed and hosted as a pub-
licly available service. It is based on distinct modular components which are available
in open-source form for installing on-premise. The service provides a graphical user
interface transcription editing, interactive recording listening and speaker annotation
functionalities.

Acknowledgements

This work has been partially conducted in the project “ICT programme” which was sup-
ported by the European Union through the European Social Fund. The study has been
supported by the European Regional Development Foundation (the project “Centre of
Excellence in Estonian Studies”). The authors acknowledge the TalTech supercomput-
ing resources made available for conducting the research reported in this paper.



420 Olev and Alumäe

References

Alumäe, T. (2014). Recent improvements in Estonian LVCSR, SLTU.
Alumäe, T., Tilk, O., Asadullah (2018). Advanced rich transcription system for Estonian speech,

Baltic HLT, pp. 1–8.
Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saunders, L.,

Tyers, F. M., Weber, G. (2020). Common Voice: A massively-multilingual speech corpus,
LREC.

Asadullah, Alumäe, T. (2018). Data augmentation and teacher-student training for LF-MMI, 21st
International Conference on Text, Speech and Dialogue.

Babu, A., Wang, C., Tjandra, A., Lakhotia, K., Xu, Q., Goyal, N., Singh, K., von Platen, P., Saraf,
Y., Pino, J., Baevski, A., Conneau, A., Auli, M. (2021). XLS-R: Self-supervised cross-lingual
speech representation learning at scale, arXiv preprint arXiv:2111.09296 .

Baevski, A., Zhou, Y., Mohamed, A., Auli, M. (2020). wav2vec 2.0: A framework for self-
supervised learning of speech representations, Advances in Neural Information Processing
Systems 33, 12449–12460.

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P., Palumbo, E., Notredame, C. (2017).
Nextflow enables reproducible computational workflows, Nature Biotechnology 35, 316–
319.

Fan, A., Grave, E., Joulin, A. (2020). Reducing transformer depth on demand with structured
dropout, ICLR.

Gorman, K. (2016). Pynini: A Python library for weighted finite-state grammar compilation,
SIGFSM Workshop on Statistical NLP and Weighted Automata, pp. 75–80.

Han, K. J., Pan, J., Tadala, V. K. N., Ma, T., Povey, D. (2021). Multistream CNN for robust
acoustic modeling, ICASSP, pp. 6873–6877.

Kallas, J., Koppel, K. (2019). Estonian National Corpus 2019.
https://doi.org/10.15155/3-00-0000-0000-0000-08565L

Ko, T., Peddinti, V., Povey, D., Seltzer, M. L., Khudanpur, S. (2017). A study on data augmenta-
tion of reverberant speech for robust speech recognition, ICASSP.

Kudo, T., Richardson, J. (2018). Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing, arXiv preprint arXiv:1808.06226 .

Laur, S., Orasmaa, S., Särg, D., Tammo, P. (2020). EstNLTK 1.6: Remastered Estonian NLP
pipeline, LREC, pp. 7152–7160.

Lippus, P. (2011). The acoustic features and perception of the Estonian quantity system, Ph.d.
thesis, University of Tartu.

Lison, P., Tiedemann, J. (2016). OpenSubtitles2016: Extracting large parallel corpora from movie
and TV subtitles, LREC.

Meister, E. (2021). A corpus of elderly Estonian speech (under development).
https://doi.org/10.15155/9-00-0000-0000-0000-00220L

Meister, E., Meister, L. (2015). Development and use of the Estonian L2 corpus, Workshop on
Phonetic Learner Corpora, pp. 45–47.

Meister, E., Meister, L., Metsvahi, R. (2012). New speech corpora at IoC, XXVII Fonetiikan
päivät.

Olev, A. (2019). Web application for authoring speech transcriptions, Ms. thesis, Tallinn Uni-
versity of Technology.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., Auli, M. (2019).
fairseq: A fast, extensible toolkit for sequence modeling, NAACL-HLT: Demonstrations.

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., Le, Q. V. (2019). SpecAug-
ment: A simple data augmentation method for automatic speech recognition, Interspeech.



Estonian Speech Recognition and Transcription Editing Service 421

Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohamadi, M., Khudanpur, S. (2018). Semi-
orthogonal low-rank matrix factorization for deep neural networks, Interspeech.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
Motlı́ček, P., Qian, Y., Schwarz, P., Silovský, J., Stemmer, G., Vesel, K. (2011). The kaldi
speech recognition toolkit, ASRU.

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan, C.,
Dawalatabad, N., Heba, A., Zhong, J., Chou, J.-C., Yeh, S.-L., Fu, S.-W., Liao, C.-F., Ras-
torgueva, E., Grondin, F., Aris, W., Na, H., Gao, Y., Mori, R. D., Bengio, Y. (2021). Speech-
Brain: A general-purpose speech toolkit. arXiv:2106.04624.

Reynaert, M., Van Gompel, M., Sloot, K., Van den Bosch, A. (2015). Piccl: Philosophical in-
tegrator of computational and corpus libraries, Proceedings of CLARIN Annual Conference
2015.

Silero Team (2021). Silero VAD: pre-trained enterprise-grade voice activity detector (VAD),
number detector and language classifier, https://github.com/snakers4/silero-vad.

Synder, D., Chen, G., Povey, D. (2015). MUSAN: A music, speech, and noise corpus.
arXiv:1510.08484.

Valk, J., Alumäe, T. (2021). VoxLingua107: a dataset for spoken language recognition, Spoken
Language Technology Workshop (SLT), pp. 652–658.

Wang, C., Rivière, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., Williamson, M., Pino, J.,
Dupoux, E. (2021). Voxpopuli: A large-scale multilingual speech corpus for representation
learning, semi-supervised learning and interpretation.
https://arxiv.org/abs/2101.00390

Received August 19, 2022 , accepted August 25, 2022


